Skip to main content

Advertisement

Log in

Diffuser miniature pump with an extra ferrofluidic valve

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents the prototype design and fabrication of a magnetically actuated miniature pump that utilizes self-sealing capability of ferrofluid-covered permanent magnets in both pumping and valving mechanisms. The valving action is performed by employing one active valve along with two nozzle/diffuser elements. Two cylindrical permanent magnets are placed inside the flat-wall channels: One magnet acts as the active valve and the other one serves as a reciprocating piston actuating the working fluid. In order to seal the gaps between the channel walls and the permanent magnet of the valve/piston, ferrofluid is used to cover the surfaces of both magnets. The valve and the piston are actuated using external permanent magnets driven by two separate stepper motors. Working with a stroke length of 20 mm at a driving frequency of 0.5 Hz, the pump is able to achieve a maximum flow rate of 1310 µL/min and a maximum 66 mm of water backpressure. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666

    Article  Google Scholar 

  • Ando B, Ascia A, Baglio S, Beninato A (2009a) The “One drop” ferrofluidic pump with analog control. Sens Actuators A Phys 156:251–256

    Article  Google Scholar 

  • Ando B, Ascia A, Baglio S, Pitrone N (2009b) Ferrofluidic pumps: a valuable implementation without moving parts. IEEE Trans Instrum Meas 58:3232–3237

    Article  Google Scholar 

  • Ashouri M, Shafii MB, Moosavi A, Amiri Hezave H (2015) A novel revolving piston minipump. Sens Actuators B Chem 218:237–244

    Article  Google Scholar 

  • Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A (2015) 3D-printed microfluidic automation. Lab Chip 15:1934–1941

    Article  Google Scholar 

  • Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B Chem 99:592–600

    Article  Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10:215–221

    Article  Google Scholar 

  • Huang P-H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y, Chan CY, Huang TJ (2013) An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 13:3847–3852

    Article  Google Scholar 

  • Huang P-H, Nama N, Mao Z, Li P, Rufo J, Chen Y, Xie Y, Wei C-H, Wang L, Huang TJ (2014) A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14:4319–4323

    Article  Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Kim EG, Oh JG, Choi B (2006) A study on the development of a continuous peristaltic micropump using magnetic fluids. Sens Actuators A Phys 128:43–51

    Article  Google Scholar 

  • Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106:21478–21483

    Article  Google Scholar 

  • Kurtoğlu E, Bilgin A, Şeşen M, Mısırlıoğlu B, Yıldız M, Acar HFY, Koşar A (2012) Ferrofluid actuation with varying magnetic fields for micropumping applications. Microfluid Nanofluid 13:683–694

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  • Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, Truica CI, Drabick JJ, El-Deiry WS, Dao M, Suresh S, Huang TJ (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA 112:4970–4975

    Article  Google Scholar 

  • Moghadam ME, Shafii MB (2011) Rotary magnetohydrodynamic micropump based on slug trapping valve. J Microelectromech Syst 20:260–269

    Article  Google Scholar 

  • Münchow G, Dadic D, Doffing F, Hardt S, Drese KS (2005) Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev Mol Diagn 5:613–620

    Article  Google Scholar 

  • Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7:599–619

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Nguyen NT, Chai MF (2009) A stepper micropump for ferrofluid driven microfluidic systems. Micro Nanosyst 1:17–21

    Article  Google Scholar 

  • Nguyen NT, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392

    Article  Google Scholar 

  • Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130:917–942

    Article  Google Scholar 

  • Nowak J, Wolf D, Odenbach S (2014) A rheological and microscopical characterization of biocompatible ferrofluids. J Magn Magn Mater 354:98–104

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens Actuators A Phys 84:165–175

    Article  Google Scholar 

  • Özbey A, Karimzadehkhouei M, Yalçın SE, Gozuacik D, Koşar A (2015) Modeling of ferrofluid magnetic actuation with dynamic magnetic fields in small channels. Microfluid Nanofluid 18:447–460

    Article  Google Scholar 

  • Schmid L, Wixforth A, Weitz DA, Franke T (2011) Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid Nanofluid 12:229–235

    Article  Google Scholar 

  • Singhal V, Garimella SV, Raman A (2004) Microscale pumping technologies for microchannel cooling systems. Appl Mech Rev 57:191–221

    Article  Google Scholar 

  • Tang S-Y, Khoshmanesh K, Sivan V, Petersen P, O’Mullane AP, Abbott D, Mitchell A, Kalantar-zadeh K (2014) Liquid metal enabled pump. Proc Natl Acad Sci USA 111:3304–3309

    Article  Google Scholar 

  • Torres-Díaz I, Rinaldi C (2014) Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10:8584–8602

    Article  Google Scholar 

  • Tovar AR, Patel MV, Lee AP (2011) Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid Nanofluid 10:1269–1278

    Article  Google Scholar 

  • van den Beld WTE, Cadena NL, Bomer J, de Weerd EL, Abelmann L, van den Berg A, Eijkel JCT (2015) Bidirectional microfluidic pumping using an array of magnetic Janus microspheres rotating around magnetic disks. Lab Chip 15:2872–2878

    Article  Google Scholar 

  • Wang SS, Jiao ZJ, Huang XY, Yang C, Nguyen NT (2008) Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluid Nanofluid 6:847–852

    Article  Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105:28–38

    Article  Google Scholar 

  • Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2005a) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14:96–102

    Article  Google Scholar 

  • Yamahata C, Lotto C, Al-Assaf E, Gijs MAM (2005b) A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1:197–207

    Article  Google Scholar 

  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25:483–514

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Optics and Laser Laboratory at Sharif University of Technology for help with recording measurements. The first author thanks Dr. Behnam Ebrahimi and Dr. Sajjad Z. Meymand for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Behshad Shafii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, M., Shafii, M.B. & Moosavi, A. Diffuser miniature pump with an extra ferrofluidic valve. Microfluid Nanofluid 19, 1235–1244 (2015). https://doi.org/10.1007/s10404-015-1642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1642-9

Keywords

Navigation